domingo, 29 de julio de 2012

Poesía Para Pi


Pi………….!


El número Pi es digno de admiración
tres coma uno cuatro uno
todas sus cifras siguientes también son iniciales
cinco nueve dos, porque nunca se termina.
No permite abarcarlo con la mirada seis cinco tres cinco
con un cálculo ocho nueve
con la imaginación siete nueve
o en broma tres dos tres, es decir, por comparación
cuatro seis con cualquier otra cosa
dos seis cuatro tres en el mundo.
La más larga serpiente después de varios metros se interrumpe
Igualmente, aunque un poco más tarde, hacen las serpientes fabulosas.
El cortejo de cifras que forman el número Pi
no se detiene en el margen de un folio,
es capaz de prolongarse por la mesa, a través del aire,
a través del muro, de una hoja, del nido de un pájaro,
de las nubes, directamente al cielo
a través de la total hinchazón e inmensidad del cielo.
¡Oh qué corta es la cola del cometa, como la de un ratón!
¡Qué frágil el rayo de la estrella que se encorva en cualquier espacio!
Pero aquí dos tres quince trescientos noventa
mi número de teléfono la talla de tu camisa
año mil novecientos setenta y tres sexto piso
número de habitantes sesenta y cinco décimos
la medida de la cadera dos dedos la charada y el código
en la que mi ruiseñor vuela y canta
y pide un comportamiento tranquilo
también transcurren la tierra y el cielo
pero no el número Pi, éste no,
él es todavía un buen cinco
no es un ocho cualquiera
ni el último siete
metiendo prisa, oh, metiendo prisa a la perezosa eternidad
para la permanencia.
Escrita por: Wislava Szymborska escritora y Premio Nobel polaca (nacida en Polonia en 1923 - fallecida en 2012), por cierto bastante aficionada a las matemáticas. 
Letra griega pi. Símbolo adoptado inicialmente en 1706 por William Jones y popularizado por Euler

El número Pi es la constante que relaciona el perímetro de una circunferencia con la amplitud de su diámetro: Π = L/D. Se trata de un valor con un infinito número de decimales, cuya secuencia comienza de la siguiente manera: 3,1415926535897932384626433832795028841…
Este no es un número exacto sino que es de los llamados irracionales, ya que tiene infinitas cifras decimales; frecuentemente utilizado en las matemáticas  y en la física, además de en otras disciplinas como la geometría y la trigonometría.

Al cálculo de pi se han dedicado millones de horas desde que los antiguos egipcios, allá por el año 1600 a.C, ya concluyeran que existía relación entre la longitud y el diámetro de una circunferencia; se insinuó en ese entonces que todos los círculos conservaban una estrecha dependencia  entre el contorno y su radio pero tan sólo desde el siglo XVII la correlación se convirtió en un dígito y fue identificado con el nombre "Pi" (deperiphereia, denominación que los griegos daban al perímetro de un círculo).

Esta notación fue usada por primera vez en 1706 por el matemático galés William Jones y popularizada por el matemático Leonard Euler en su obra "Introducción al cálculo infinitesimal" de 1748. Fue conocida anteriormente como constante de Ludoph(en honor al matemático Ludolph van Ceulen) o como constante de Arquímedes (No se debe confundir con el número de Arquímedes).


Reacciones:

3 comentarios:

Ali dijo...
Este comentario ha sido eliminado por el autor.
Ali dijo...

Para retener un cierto número de cifras de Pi ; poemas mnemotécnicos han sido construidos en varias lenguas.
He aquí un poema en francés.

Que j'aime à faire apprendre ce nombre utile aux sages ! 3 1 4 1 5 9 2 6 5 3 5
Immortel Archimède, artiste ingénieur, 8 9 7 9
Qui de ton jugement peut priser la valeur ? 3 2 3 8 4 6 2 6
Pour moi, ton problème eut de pareils avantages. 4 3 3 8 3 2 7 9
Jadis, mystérieux, un problème bloquait 5 0 2 8 8
Tout l'admirable procédé, l'œuvre grandiose 4 1 9 7 1 6 9
Que Pythagore découvrit aux anciens Grecs. 3 9 9 3 7 5
0 quadrature ! Vieux tourment du philosophe 1 0 5 8 2 9
Insoluble rondeur, trop longtemps vous avez 9 7 4 9 4 4
Défié Pythagore et ses imitateurs. 5 9 2 3 0
Comment intégrer l'espace plan circulaire ? 7 8 1 6 4 0
Former un triangle auquel il équivaudra ? 6 2 8 6 2 0
Nouvelle invention : Archimède inscrira 8 9 9 8
Dedans un hexagone ; appréciera son aire 6 2 8 0 3 4
Fonction du rayon. Pas trop ne s'y tiendra : 8 2 5 3 4 2 1 1 7
Dédoublera chaque élément antérieur ; 0 6 7 9
Toujours de l'orbe calculée approchera ; 8 2 1 4 8 0
Définira limite ; enfin, l'arc, le limiteur 8 6 5 1 3 2 8
De cet inquiétant cercle, ennemi trop rebelle 2 3 0 6 6 4 7
Professeur, enseignez son problème avec zèle 0 9 3 8 4 4

Liyuan Suarez dijo...

Es cierto mi querido amigo a través de la reina de todas la ciencias se puede hablar en distintas lengua para llevarnos siempre al mismo resulta.... Gracias por ser parte de mis amigos